We develop a mean field theory for sigmoid belief networks based on ideas from statistical mechanics. Our mean field theory provides a tractable approximation to the true probability distribution in these networks; it also yields a lower bound on the likelihood of evidence. We demonstrate the utility of this framework on a benchmark problem in statistical pattern recognition -- the classification of handwritten digits
Most research on rule-based inference under uncertainty has focused on the normative validity and ef...
Highly expressive directed latent variable mod-els, such as sigmoid belief networks, are diffi-cult ...
Highly expressive directed latent variable mod-els, such as sigmoid belief networks, are diffi-cult ...
We develop a mean field theory for sigmoid belief networks based on ideas from statistical mechanics...
We develop a mean eld theory for sigmoid belief networks based on ideas from statistical mechanics. ...
Sigmoid type belief networks, a class of probabilistic neural networks, provide a natural framewor...
The chief aim of this paper is to propose mean-field approximations for a broad class of Belief ne...
Exact inference in densely connected Bayesian networks is computationally intractable, and so there ...
Exact inference in densely connected Bayesian networks is computation-ally intractable, and so there...
The chief aim of this paper is to propose mean-eld approximations for a broad class of Belief networ...
We present techniques for computing upper and lower bounds on the likelihoods of partial instantiati...
Bayesian belief networks can represent the complicated probabilistic processes that form natural sen...
More and more real-life applications of the belief network framework begin to emerge. As application...
Exact inference in large, densely connected probabilistic networks is computa-tionally intractable, ...
AbstractMore and more real-life applications of the belief-network framework are emerging. As applic...
Most research on rule-based inference under uncertainty has focused on the normative validity and ef...
Highly expressive directed latent variable mod-els, such as sigmoid belief networks, are diffi-cult ...
Highly expressive directed latent variable mod-els, such as sigmoid belief networks, are diffi-cult ...
We develop a mean field theory for sigmoid belief networks based on ideas from statistical mechanics...
We develop a mean eld theory for sigmoid belief networks based on ideas from statistical mechanics. ...
Sigmoid type belief networks, a class of probabilistic neural networks, provide a natural framewor...
The chief aim of this paper is to propose mean-field approximations for a broad class of Belief ne...
Exact inference in densely connected Bayesian networks is computationally intractable, and so there ...
Exact inference in densely connected Bayesian networks is computation-ally intractable, and so there...
The chief aim of this paper is to propose mean-eld approximations for a broad class of Belief networ...
We present techniques for computing upper and lower bounds on the likelihoods of partial instantiati...
Bayesian belief networks can represent the complicated probabilistic processes that form natural sen...
More and more real-life applications of the belief network framework begin to emerge. As application...
Exact inference in large, densely connected probabilistic networks is computa-tionally intractable, ...
AbstractMore and more real-life applications of the belief-network framework are emerging. As applic...
Most research on rule-based inference under uncertainty has focused on the normative validity and ef...
Highly expressive directed latent variable mod-els, such as sigmoid belief networks, are diffi-cult ...
Highly expressive directed latent variable mod-els, such as sigmoid belief networks, are diffi-cult ...