Tese de doutoramento em Programa de Doutoramento em Matemática, apresentada ao Departamento de Matemática da Faculdade de Ciências e Tecnologia da Universidade de CoimbraOs métodos de região de confiança formam uma classe geral de métodos para optimização contínua que encontram aplicação numa variedade de problemas e contextos. Em particular, estes métodos têm sido estudados e aplicados a problemas sem recurso a derivadas. A análise dos métodos de região de confiança sem derivadas tem incidido em convergência global, mostrando que estes métodos geram sequências de pontos convergindo para pontos estacionários, independentemente do ponto inicial. Uma grande parte desta análise é feita no caso suave, sabendo-se pouco sobre a complexidade ...
A general family of trust region algorithms for nonsmooth optimization is considered. Conditions for...
An algorithm for solving the problem of minimizing a non-linear function subject to equality constra...
Abstract. This paper extends the known excellent global convergence properties of trust region algor...
Trust-region methods are a broad class of methods for continuous optimization that found application...
Trust-region methods are a broad class of methods for continuous optimization that found application...
Trust-region algorithms have been proved to globally converge with probability one when the accuracy...
The minimization of a particular nondifferentiable function is considered. The first and second orde...
Trust-region algorithms have been proved to globally converge with probability 1 when the accuracy o...
Orientador: Prof. Dr. Geovani Nunes GrapigliaDissertação (mestrado) - Universidade Federal do Paraná...
Convexity is an essential characteristic in optimization. In reality, many optimization problems are...
In this paper we study the minimization of a nonsmooth black-box type function, without assuming any...
ABSTRACT. The aim of this text is to highlight recent advances of trust-region-based methods for non...
Neste trabalho apresentamos o estudo de dois algoritmos baseados em regiões de confiança para minimi...
Orientadora: Dra. Elizabeth Wegner Karas UFPR - BrasilCoorientador: D. Habil. Welington Luis de Oliv...
Orientador: Jose Mario Martinez PerezTese (doutorado) - Universidade Estadual de Campinas, Instituto...
A general family of trust region algorithms for nonsmooth optimization is considered. Conditions for...
An algorithm for solving the problem of minimizing a non-linear function subject to equality constra...
Abstract. This paper extends the known excellent global convergence properties of trust region algor...
Trust-region methods are a broad class of methods for continuous optimization that found application...
Trust-region methods are a broad class of methods for continuous optimization that found application...
Trust-region algorithms have been proved to globally converge with probability one when the accuracy...
The minimization of a particular nondifferentiable function is considered. The first and second orde...
Trust-region algorithms have been proved to globally converge with probability 1 when the accuracy o...
Orientador: Prof. Dr. Geovani Nunes GrapigliaDissertação (mestrado) - Universidade Federal do Paraná...
Convexity is an essential characteristic in optimization. In reality, many optimization problems are...
In this paper we study the minimization of a nonsmooth black-box type function, without assuming any...
ABSTRACT. The aim of this text is to highlight recent advances of trust-region-based methods for non...
Neste trabalho apresentamos o estudo de dois algoritmos baseados em regiões de confiança para minimi...
Orientadora: Dra. Elizabeth Wegner Karas UFPR - BrasilCoorientador: D. Habil. Welington Luis de Oliv...
Orientador: Jose Mario Martinez PerezTese (doutorado) - Universidade Estadual de Campinas, Instituto...
A general family of trust region algorithms for nonsmooth optimization is considered. Conditions for...
An algorithm for solving the problem of minimizing a non-linear function subject to equality constra...
Abstract. This paper extends the known excellent global convergence properties of trust region algor...