Microarray experiments are being widely used in medical and biological research. The main features of these studies are the large number of variables (genes) involved and the low number of replicates (arrays). It seems clear that the most appropriate models, when looking for detecting differences in gene expression are those that exploit the most useful information to compensate for the lack of replicates. On the other hand, the control of the error in the decision process plays an important role for the high number of simultaneous statistical tests (one for each gene), so that concepts such as the false discovery rate (FDR) take a special importance. One of the alternatives for the analysis of the data in these experiments is based on the ...