International audienceMany automatic speech recognition (ASR) systems rely on the sole pronunciation dictionaries and language models to take into account information about language. Implicitly, morphology and syntax are to a certain extent embedded in the language models but the richness of such linguistic knowledge is not exploited. This paper studies the use of morpho-syntactic (MS) information in a post-processing stage of an ASR system, by reordering N-best lists. Each sentence hypothesis is first part-of-speech tagged. A morpho-syntactic score is computed over the tag sequence with a long-span language model and combined to the acoustic and word-level language model scores.This new sentence-level score is finally used to rescore N-bes...