International audienceThis paper describes and evaluates a computational architecture to discover and collect occurrences of speech repetitions, or motifs, in a totally unsupervised fashion, that is in the absence of acoustic, lexical or pronunciation modeling and training material. In the last few years, this task has known an increasing interest from the speech community because of a) its potential applicability in spoken document processing (as a preliminary step to summarization, topic clustering, etc.) and b) its novel methodology, that defines a new paradigm to speech processing that circumvents the issues common to all supervised, trained technologies. The contributions implied by the proposed system are two-fold: 1) the design of a ...