Dynamic and partial reconfiguration allows to dynamically allocate the tasks constituting an application in the reconfigurable regions of an FPGA. However, dynamic management of the tasks directly impacts the communications since tasks are not always implemented at the same place in the FPGA. So, the communication architecture must support high flexibility and significant qualities of service (guaranteed bandwidth and/or latency). In this PhD, several interconnection architectures were studied and evaluated regarding their compliance with a dynamically reconfigurable system implemented in FPGA. This study led to the proposal of the DRAFT network that fully supports this concept. This network uses some specificities of the dynamically reconf...