International audienceSafety verification of hybrid systems is a key technique in developing embedded systems that have a strong coupling with the physical environment. We propose an automated logical analytic method for verifying a class of hybrid automata. The problems are more general than those solved by the existing model checkers: our method can verify models with symbolic parameters and nonlinear equations as well. First, we encode the execution trace of a hybrid automaton as an imperative program. Its safety property is then translated into proof obligations by strongest postcondition calculus. Finally, these logic formulas are discharged by state-of-the-art arithmetic solvers (e.g., Mathematica). Our proposed algorithm efficiently ...