Recently, there has been an increased interest in the development of kernel methods for learning with sequential data. The signature kernel is a learning tool with potential to handle irregularly sampled, multivariate time series. In [1] the authors introduced a kernel trick for the truncated version of this kernel avoiding the exponential complexity that would have been involved in a direct computation. Here we show that for continuously differentiable paths, the signature kernel solves a hyperbolic PDE and recognize the connection with a well known class of differential equations known in the literature as Goursat problems. This Goursat PDE only depends on the increments of the input sequences, does not require the explicit computation of...