Cette thèse est consacrée à l'étude des propriétés géométriques qualitatives de systèmes dynamiques stochastiques: leur symétries, la réduction et l'intégrabilité, avec des applications au problème de la modélisation des marchés financiers. Il se compose de quatre chapitres. Le chapitre 1 est une brève revue des notions de base de la théorie des systèmes dynamiques stochastiques (SDS) écrites sous la forme de Stratonovich, et aussi des systèmes Hamiltoniens. Le matériel de ce chapitre n'est pas nouvelle, et est inclus dans cette thèse pour la faire plus indépendante. Dans Chapitre 2, nous étudions le problème de la réduction de la SDS par rapport à une propre action d'un groupe de Lie. Il s'agit d'un problème important dans la théorie des ...