Manifold learning plays a central role in many Machine Learning (ML) methods where it assumes information lies on a low-dimensional manifold, but the presence of high dimensional noise may defect their performance. In this contribution, we propose a novel (swarm) algorithm to suppress the noise of manifolds of potentially varying dimensionalities. Inspired by colonial insects this method employs multiple agents with different strategies moving through the data space in parallel. During this process, they use local information to reconstruct the manifolds and then move data objects close to them. Moreover, principles of evolutionary game theory are used to encourage agents to select better strategies and hence optimize the hyper-parameters a...