In this paper we consider a minimal, linear, time-invariant (LTI) system of order n, large. Our goal is to compute an approximation of order ν < n that simultaneously matches ν moments, has ℓ poles and k zeros fixed, with ℓ + k < ν, and achieves minimal H2 norm of the approximation error. For this, in the family of ν order parametrized models that match ν moments we impose ℓ+k linear constraints yielding a subfamily of models with ℓ poles and k zeros imposed. Then, in the subfamily of ν order models matching ν moments, with ℓ poles and k zeros imposed we propose an optimization problem that provides the model yielding the minimal H2-norm of the approximation error. We analyze the first-order optimality conditions of this optimization proble...