Manipulation of particles in a controllable manner is highly desirable in many applications. Inspired by biological cilia, this article experimentally and numerically demonstrates a versatile particle transportation platform consisting of arrays of magnetic artificial cilia (MAC) actuated by a rotating magnet. By performing a tilted conical motion, the MAC are capable of transporting particles on their tips, along designated directions that can be fully controlled by the externally applied magnetic field, in both liquid and air, at high resolution (particle precision), with varying speeds and for a range of particle sizes. Moreover, the underlying mechanism of the controlled particle transportation is studied in depth by combining experimen...