Fokker–Planck PDEs (including diffusions) for stable Lévy processes (including Wiener processes) on the joint space of positions and orientations play a major role in mechanics, robotics, image analysis, directional statistics and probability theory. Exact analytic designs and solutions are known in the 2D case, where they have been obtained using Fourier transform on SE(2) . Here, we extend these approaches to 3D using Fourier transform on the Lie group SE(3) of rigid body motions. More precisely, we define the homogeneous space of 3D positions and orientations R3⋊S2:=SE(3)/({0}×SO(2)) as the quotient in SE(3) . In our construction, two group elements are equivalent if they are equal up to a rotation around the reference axis. On this quot...