In this paper, we tackle the problem of reducing discrepancies between multiple domains, i.e. multi-source domain adaptation, and consider it under the target shift assumption: in all domains we aim to solve a classification problem with the same output classes, but with different labels proportions. This problem, generally ignored in the vast majority of domain adaptation papers, is nevertheless critical in real-world applications, and we theoretically show its impact on the success of the adaptation. Our proposed method is based on optimal transport, a theory that has been successfully used to tackle adaptation problems in machine learning. The introduced approach, Joint Class Proportion and Optimal Transport (JCPOT), performs multi-sourc...