Determining the maximum capacities of shunting yards is an important problem at Dutch Railways (NS). Solving this capacity determination problem is computational expensive as it requires to solve an NP-hard shunting planning problem. Currently, NS uses a shunt plan simulator where a local search heuristic is implemented to determine such capacities. In this paper, we study how to combine machine learning with local search in order to speed up finding shunting plans in the capacity determination problem. We investigate this in the following two ways. In the first approach, we propose to use the Deep Graph Convolutional Neural Network (DGCNN) to predict whether local search will find a feasible shunt plan given an initial solution. Using inst...