This study focuses on the prediction of long-term failure of glassy polymers under static or cyclic loading conditions, including the role of stress-accelerated progressive aging. Progressive physical aging plays a dominant role in a polymer's performance under prolonged loading conditions, and to obtain accurate predictions of failure, its effect has to be considered. First, the aging kinetics, as influenced by temperature and stress history, are studied extensively. Similar to an elevated temperature, the application of a stress (below the yield stress) activates the aging process, and as a result, the yield stress will evolve faster in time. The activation by stress appears to be limited; at some stress level, the activation stagnates an...