In the case of multicollinearity and outliers in regression analysis, the researchers are encouraged to deal with two problems simultaneously. Biased methods based on robust estimators are useful for estimating the regression coefficients for such cases. In this study we examine some robust biased estimators on the datasets with outliers in x direction and outliers in both x and y direction from literature by means of the R package ltsbase. Instead of a complete data analysis, robust biased estimators are evaluated using capabilities and features of this package.En el caso de multicolinealidad y outliers en análisis de regresión, los investigadores se enfrentan a tener que tratar dos problemas de manera simultánea. Métodos sesgados basados ...
This study attempts to investigate the effect of outliers on estimation of parameters in regression ...
The ordinary least squares (OLS) procedure is inefficient when the underlying assumption of constant...
In a linear regression model, the ordinary least squares (OLS) method is considered the best method ...
Master of ScienceDepartment of StatisticsWeixin YaoIn practice, when applying a statistical method i...
In regression analysis, the presence of outliers in the dataset can strongly distort the classical l...
Title: Robustification of statistical and econometrical regression methods Author: Mgr. Tomáš Jurczy...
In regression analysis, the presence of outliers in the data set can strongly distort the classical ...
Abstract. In regression analysis, the presence of outliers in the data set can strongly distort the ...
Estimadores del tipo razón son usados extensamente en la teoría del muestreo, para obtener estimados...
The linear regression model requires robust estimation of parameters, if the measured data are conta...
The Ordinary Least Squares (OLS) method has been the most popular technique for estimating the param...
Se presentaron estimadores clásicos y robustos para la estimación de parámetros de pobla-ciones fini...
RESUMEN: El análisis de regresión es una herramienta ampliamente usada en el trabajo estadístico apl...
Robust methods are little applied (although much studied by statisticians). We monitor very robust r...
TEZ10804Tez (Doktora) -- Çukurova Üniversitesi, Adana, 2015.Kaynakça (s. 73-78) var.xii, 106 s. : re...
This study attempts to investigate the effect of outliers on estimation of parameters in regression ...
The ordinary least squares (OLS) procedure is inefficient when the underlying assumption of constant...
In a linear regression model, the ordinary least squares (OLS) method is considered the best method ...
Master of ScienceDepartment of StatisticsWeixin YaoIn practice, when applying a statistical method i...
In regression analysis, the presence of outliers in the dataset can strongly distort the classical l...
Title: Robustification of statistical and econometrical regression methods Author: Mgr. Tomáš Jurczy...
In regression analysis, the presence of outliers in the data set can strongly distort the classical ...
Abstract. In regression analysis, the presence of outliers in the data set can strongly distort the ...
Estimadores del tipo razón son usados extensamente en la teoría del muestreo, para obtener estimados...
The linear regression model requires robust estimation of parameters, if the measured data are conta...
The Ordinary Least Squares (OLS) method has been the most popular technique for estimating the param...
Se presentaron estimadores clásicos y robustos para la estimación de parámetros de pobla-ciones fini...
RESUMEN: El análisis de regresión es una herramienta ampliamente usada en el trabajo estadístico apl...
Robust methods are little applied (although much studied by statisticians). We monitor very robust r...
TEZ10804Tez (Doktora) -- Çukurova Üniversitesi, Adana, 2015.Kaynakça (s. 73-78) var.xii, 106 s. : re...
This study attempts to investigate the effect of outliers on estimation of parameters in regression ...
The ordinary least squares (OLS) procedure is inefficient when the underlying assumption of constant...
In a linear regression model, the ordinary least squares (OLS) method is considered the best method ...