IEEE Privacy leakage becomes increasingly serious because massive volumes of data are constantly shared in diverse booming cyber-physical social networks (CPSN). Differential privacy is one of the dominating privacy-preserving methods, but most of its extensions assume all data users share the same privacy requirement, which fails to satisfy various privacy expectations in practice. To address this issue, customizable privacy preservation based on differential privacy is a potentially promising countermeasure. However, we found that customizable protection will trigger the composition mechanism of differential privacy and leads to unexpected correlations among injected noises that weakens privacy protection and reveal more sensitive inforam...