Subjective video quality assessment (VQA) strongly depends on semantics, context, and the types of visual distortions. Currently, all existing VQA databases include only a small number of video sequences with artificial distortions. The development and evaluation of objective quality assessment methods would benefit from having larger datasets of real-world video sequences with corresponding subjective mean opinion scores (MOS), in particular for deep learning purposes. In addition, the training and validation of any VQA method intended to be ‘general purpose’ requires a large dataset of video sequences that are representative of the whole spectrum of available video content and all types of distortions. We report our work on KoN...