We propose a personalized ConvNet pose estimator that automatically adapts itself to the uniqueness of a person's appearance to improve pose estimation in long videos. We make the following contributions: (i) we show that given a few high-precision pose annotations, e.g. from a generic ConvNet pose estimator, additional annotations can be generated throughout the video using a combination of image-based matching for temporally distant frames, and dense optical flow for temporally local frames, (ii) we develop an occlusion aware self-evaluation model that is able to automatically select the high-quality and reject the erroneous additional annotations, and (iii) we demonstrate that these high-quality annotations can be used to fine-tune a Con...