We introduce a necessary and sufficient criterion for the non-Markovianity of Gaussian quantum dynamical maps based on the violation of divisibility. The criterion is derived by defining a general vectorial representation of the covariance matrix which is then exploited to determine the condition for the complete positivity of partial maps associated with arbitrary time intervals. Such construction does not rely on the Choi-Jamiolkowski representation and does not require optimization over states
We investigate the dynamics of Gaussian states of continuous variable systems under Gaussianity-pres...
We investigate the non-Markovianity of continuous-variable Gaussian quantum channels through the evo...
This thesis is centred around the striking phenomenon of non-Markovianity which emanates from exact...
We introduce a necessary and sufficient criterion for the non-Markovianity of Gaussian quantum dynam...
We investigate dynamics of Gaussian states of continuous variable systems under Gaussianity preservi...
We investigate the dynamics of Gaussian states of continuous variable systems under Gaussianity-pres...
We investigate the dynamics of Gaussian states of continuous variable systems under Gaussianity-pres...
We characterize a class of Markovian dynamics using the concept of divisible dynamical map. Moreover...
We introduce a non-Markovianity measure for continuous-variable open quantum systems based on the id...
We investigate the Markovian and non-Markovian dynamics of Gaussian quantum channels, exploiting a r...
We investigate the Markovian and non-Markovian dynamics of Gaussian quantum channels, exploiting a r...
We investigate the Markovian and non-Markovian dynamics of Gaussian quantum channels, exploiting a r...
We introduce a tool for the quantitative characterization of the departure from Markovianity of a gi...
We introduce a tool for the quantitative characterization of the departure from Markovianity of a gi...
We investigate the dynamics of Gaussian states of continuous variable systems under Gaussianity-pres...
We investigate the dynamics of Gaussian states of continuous variable systems under Gaussianity-pres...
We investigate the non-Markovianity of continuous-variable Gaussian quantum channels through the evo...
This thesis is centred around the striking phenomenon of non-Markovianity which emanates from exact...
We introduce a necessary and sufficient criterion for the non-Markovianity of Gaussian quantum dynam...
We investigate dynamics of Gaussian states of continuous variable systems under Gaussianity preservi...
We investigate the dynamics of Gaussian states of continuous variable systems under Gaussianity-pres...
We investigate the dynamics of Gaussian states of continuous variable systems under Gaussianity-pres...
We characterize a class of Markovian dynamics using the concept of divisible dynamical map. Moreover...
We introduce a non-Markovianity measure for continuous-variable open quantum systems based on the id...
We investigate the Markovian and non-Markovian dynamics of Gaussian quantum channels, exploiting a r...
We investigate the Markovian and non-Markovian dynamics of Gaussian quantum channels, exploiting a r...
We investigate the Markovian and non-Markovian dynamics of Gaussian quantum channels, exploiting a r...
We introduce a tool for the quantitative characterization of the departure from Markovianity of a gi...
We introduce a tool for the quantitative characterization of the departure from Markovianity of a gi...
We investigate the dynamics of Gaussian states of continuous variable systems under Gaussianity-pres...
We investigate the dynamics of Gaussian states of continuous variable systems under Gaussianity-pres...
We investigate the non-Markovianity of continuous-variable Gaussian quantum channels through the evo...
This thesis is centred around the striking phenomenon of non-Markovianity which emanates from exact...