Les algèbres amassées sont des anneaux commutatifs intègres avec une structure combinatoire particulière.Cette structure consiste en la donnée d’une famille de graines, liées entre elles par une opération appelée mutation.Chaque graine est composée de deux parties : un amas et un carquois.Les variétés de Richardson ouvertes sont des strates de la variété de drapeaux associée à un groupe linéairealgébrique de type simplement lacé. Elles sont l’intersection de cellules de Schubert respectivement à deux sous-groupes de Borel opposés. Dans [Lec16], une sous-algèbre amassée de rang maximal sur l’anneau de coordonnéesd’une variété de Richardson ouverte a été construite et cette sous-algèbre est conjecturée être égale à l’anneauentier. La construc...
Cluster algebras are a class of commutative algebras whose generators are defined by a recursive pro...
International audienceWe present two simple descriptions of the denominator vectors of the cluster v...
The aim of this thesis is to categorify some skew-symmetrizable cluster algebras. A lot of skew-symm...
Cluster algebras are integral domains with a particular combinatorial structure. This structure cons...
47 pages, 20 figuresWe present a new algorithm to compute initial seeds for cluster structures on ca...
Cluster algebras are commutative rings inside a rational function field with a distinguished set of ...
In this paper we give a graph theoretic combinatorial interpretation for the cluster variables that ...
67 pages, 28 figuresWe show the existence of cluster $\mathcal{A}$-structures and cluster Poisson st...
Nous abordons trois axes de la combinatoire algébrique et énumérative. Le premier concerne principal...
We present an initial-seed-mutation formula for d-vectors of clus- ter variables in a cluster algeb...
1.1. Cluster algebras. Cluster algebras were introduced in 2000 by S. Fomin and A. Zelevinsky [26] a...
We construct the twist automorphism of open Richardson varieties inside the flag variety of a comple...
We introduce $3$-dimensional generalizations of Postnikov's plabic graphs and use them to establish ...
We introduce generic variables in acyclic cluster algebras $\mathcal A(Q)$. We give an explicit desc...
Cluster algebras are a class of commutative rings with a remarkable combinatorial structure, introdu...
Cluster algebras are a class of commutative algebras whose generators are defined by a recursive pro...
International audienceWe present two simple descriptions of the denominator vectors of the cluster v...
The aim of this thesis is to categorify some skew-symmetrizable cluster algebras. A lot of skew-symm...
Cluster algebras are integral domains with a particular combinatorial structure. This structure cons...
47 pages, 20 figuresWe present a new algorithm to compute initial seeds for cluster structures on ca...
Cluster algebras are commutative rings inside a rational function field with a distinguished set of ...
In this paper we give a graph theoretic combinatorial interpretation for the cluster variables that ...
67 pages, 28 figuresWe show the existence of cluster $\mathcal{A}$-structures and cluster Poisson st...
Nous abordons trois axes de la combinatoire algébrique et énumérative. Le premier concerne principal...
We present an initial-seed-mutation formula for d-vectors of clus- ter variables in a cluster algeb...
1.1. Cluster algebras. Cluster algebras were introduced in 2000 by S. Fomin and A. Zelevinsky [26] a...
We construct the twist automorphism of open Richardson varieties inside the flag variety of a comple...
We introduce $3$-dimensional generalizations of Postnikov's plabic graphs and use them to establish ...
We introduce generic variables in acyclic cluster algebras $\mathcal A(Q)$. We give an explicit desc...
Cluster algebras are a class of commutative rings with a remarkable combinatorial structure, introdu...
Cluster algebras are a class of commutative algebras whose generators are defined by a recursive pro...
International audienceWe present two simple descriptions of the denominator vectors of the cluster v...
The aim of this thesis is to categorify some skew-symmetrizable cluster algebras. A lot of skew-symm...