La recommandation de points d’intérêts (POI) est une composante essentielle des réseaux sociaux géolocalisés. Cette tâche pose de nouveaux défis dûs aux contraintes spécifiques de ces réseaux. Cette thèse étudie de nouvelles solutions au problème de la recommandation personnalisée de POI. Trois contributions sont proposées dans ce travail. La première contribution est un nouveau modèle de factorisation de matrices qui intègre les influences géographique et temporelle. Ce modèle s’appuie sur un traitement spécifique des données. La deuxième contribution est une nouvelle solution au problème dit du feedback implicite. Ce problème correspond à la difficulté à distinguer parmi les POI non visités, les POI dont l’utilisateur ignore l’existence d...
Next Point-of-Interest (POI) recommendation is a critical task in location-based services that aim t...
Human behavior presents various temporal and geographical patterns that can be used to model user pr...
The rapidly growing of Location-based Social Networks (LBSNs) provides a vast amount of check-in dat...
The task of points-of-interest (POI) recommendations has become an essential feature in location-bas...
In this thesis, we address the scalability problem of recommender systems. We propose accu rate and ...
Cette thèse s'intéresse à la problématique de passage à l'échelle des systèmes de recommandations. D...
De nos jours, il est très fréquent de représenter un système en termes de relations entre objets. Pa...
International audienceProviding personalized point-of-interest (POI) recommendation has become a maj...
With the rapid growth of location-based social network-s, Point of Interest (POI) recommendation has...
Point-of-interest (POI) recommendation is a valuable service to help users discover attractive locat...
Recommender Systems (RSs) aim to model and predict the user preference while interacting with items,...
Point-of-interest (POI) recommendation systems provide recommendation of places to users based on th...
Point-of-Interest recommendation is an essential means to help people discover attractive locations,...
This thesis focuses on large scale optimization problems and especially on matrix factorization meth...
This thesis focuses on large scale optimization problems and especially on matrix factorization meth...
Next Point-of-Interest (POI) recommendation is a critical task in location-based services that aim t...
Human behavior presents various temporal and geographical patterns that can be used to model user pr...
The rapidly growing of Location-based Social Networks (LBSNs) provides a vast amount of check-in dat...
The task of points-of-interest (POI) recommendations has become an essential feature in location-bas...
In this thesis, we address the scalability problem of recommender systems. We propose accu rate and ...
Cette thèse s'intéresse à la problématique de passage à l'échelle des systèmes de recommandations. D...
De nos jours, il est très fréquent de représenter un système en termes de relations entre objets. Pa...
International audienceProviding personalized point-of-interest (POI) recommendation has become a maj...
With the rapid growth of location-based social network-s, Point of Interest (POI) recommendation has...
Point-of-interest (POI) recommendation is a valuable service to help users discover attractive locat...
Recommender Systems (RSs) aim to model and predict the user preference while interacting with items,...
Point-of-interest (POI) recommendation systems provide recommendation of places to users based on th...
Point-of-Interest recommendation is an essential means to help people discover attractive locations,...
This thesis focuses on large scale optimization problems and especially on matrix factorization meth...
This thesis focuses on large scale optimization problems and especially on matrix factorization meth...
Next Point-of-Interest (POI) recommendation is a critical task in location-based services that aim t...
Human behavior presents various temporal and geographical patterns that can be used to model user pr...
The rapidly growing of Location-based Social Networks (LBSNs) provides a vast amount of check-in dat...