We study algebraic and homological properties of two classes of infinite dimensional Hopf algebras over an algebraically closed field k of characteristic zero. The first class consists of those Hopf k-algebras that are connected graded as algebras, and the second class are those Hopf k-algebras that are connected as coalgebras. For many but not all of the results presented here, the Hopf algebras are assumed to have finite Gel'fand-Kirillov dimension. It is shown that if the Hopf algebra H is a connected graded Hopf algebra of finite Gel'fand-Kirillov dimension n, then H is a noetherian domain which is Cohen-Macaulay, Artin-Schelter regular and Auslander regular of global dimension n. It has S2 = IdH, and is Calabi-Yau. Detailed info...