International audienceThis study proposes a new and detailed description of the fuel-cladding bonding phenomenon occurring in PWR fuel rods. Very early and late bonding states were characterized on specimens of 35.3 GWd.tU−1 moderate burnup and of 64.5 GWd.tU−1 high burnup respectively. Results were then compared with those achieved on a re-created bonded situation obtained on a Zircaloy-4/hyper-stoichiometric UO2+x model materials diffusion couple. These results tend to indicate that a chemical adhesion is probably at the origin of the PWR fuel-cladding bonding. In addition, the progressive formation of ZrO2/UO2 interfacial circumvolutions observed with increasing burnup, which lead to the physical anchorage of ZrO2 and UO2, is likely to l...