We consider the use of low-budget omnidirectional platforms for 3D mapping and self-localisation. These robots specifically permit rotational motion in the plane around a central axis, with negligible displacement. In addition, low resolution and compressed imagery, typical of the platform used, results in high level of image noise (_ ∽ 10). We observe highly sparse image feature matches over narrow inter-image baselines. This particular configuration poses a challenge for epipolar geometry extraction and accurate 3D point triangulation, upon which a standard structure from motion formulation is based. We propose a novel technique for both feature filtering and tracking that solves these problems, via a novel approach to the management of f...