We define a new notion of cuspidality for representations of GL n over a finite quotient o k of the ring of integers o of a non-Archimedean local field F using geometric and infinitesimal induction functors, which involve automorphism groups G λ of torsion o-modules. When n is a prime, we show that this notion of cuspidality is equivalent to strong cuspidality, which arises in the construction of supercuspidal representations of GL n (F). We show that strongly cuspidal representations share many features of cuspidal representations of finite general linear groups. In the function field case, we show that the construction of the representations of GL n (o k ) for k ≥ 2 for all n is equivalent to the construction of the representations of all...