This thesis is concerned with the possible future changes in the stratosphere as a result of climate change. In this context, the climate change forcing can be separated into two components: (i) radiative forcing due to a doubling of the atmospheric CO2 mixing ratio, and (ii) surface thermal forcing. My focus is on the response in the circulation of the Northern Hemisphere stratosphere in winter. All experiments are carried out with a chemistry-climate model (CCM, i.e. an atmospheric general circulation model coupled to a chemistry model), the IGCM-FASTOC, and all results shown are averages over 100-year or 50-year simulations in timeslice mode (i.e. every year can be considered as one member of an ensemble having 50 or 100 members). This a...