In conventional least square (LS) regressions for nonlinear problems, it is not easy to obtain analytical derivatives with respect to target parameters that comprise a set of normal equations. Even if the derivatives can be obtained analytically or numerically, one must take care to choose the correct initial values for the iterative procedure of solving an equation, because some undesired, locally optimized solutions may also satisfy the normal equation. In the application of genetic algorithms (GAs) for nonlinear LS, it is not necessary to use normal equations, and a GA is also capable of avoiding localized optima. However, convergence of population and reliability of solutions depends on the initial domain of parameters, similarly to the...