Figueroa-Centeno et al. [4] introduced the following product of digraphs let D be a digraph and let G be a family of digraphs such that V (F) = V for every F¿G. Consider any function h:E(D)¿G. Then the product D¿hG is the digraph with vertex set V(D)×V and ((a,x),(b,y))¿E(D¿hG) if and only if (a,b)¿E(D) and (x,y)¿E(h(a,b)). In this paper, we deal with the undirected version of the ¿h-product, which is a generalization of the classical direct product of graphs and, motivated by the ¿h-product, we also recover a generalization of the classical lexicographic product of graphs, namely the °h-product, that was introduced by Sabidussi in 1961. We provide two characterizations for the connectivity of G¿hG that generalize the existing one for the d...