A control design method is proposed to design controllers to achieve global sound pressure attenuation for noise of narrow-band frequencies in a one-dimensional acoustic duct system. This method combines a linear-quadratic-gaussian (LQG) theory with an internal model principle to design internal model-based active noise controllers so that noise of a specific (target) frequency in a duct can be reduced. The designed controller is, nevertheless, hyper sensitive to the perturbation of the target noise frequency. A reduced parameter sensitivity technique is further incorporated to improve robustness such that noise of narrow-band frequencies can be attenuated. Computer simulation shows the effectiveness of robustness improvement for the propos...