The main purpose of this thesis is the application of Bayesian methodology to the analysis of time series models with exponential noise. Since the exact Bayesian analysis proved to be very complex, even for the simplest models, it was decided to search for methods that could provide good approximations to the exact solution, so that Bayesian inference and prediction for the models could be performed in a more systematic way. The models considered are very special cases of non linear time series models. The first two chapter of the thesis are dedicated to this review, while the other chapters are concerned with the main theme of the thesis. Chapter 1 deals with a systematic review of the current development of the theory underlying the non l...
Generalized autoregressive moving average (GARMA) models are a class of models that was developed fo...
We present the results on the comparison of efficiency of approximate Bayesian methods for the analy...
A análise de séries temporais se caracteriza pelo estudo de observações autocorrelacionadas ao longo...
A Bayesian approach to the analysis of AR time series models, which permits the usual stationarity a...
The main goal of applying time series models is to obtain projections for the future values of the v...
The analysis of time series data is important in fields as disparate as the social sciences, biology...
This work investigates outlier detection and modelling in non-Gaussian autoregressive time series mo...
In this paper, we develop a Bayesian analysis of a threshold antoregressive model with exponential n...
Nesta dissertação estudou-se o modelo GARMA para modelar séries temporais de dados de contagem com a...
In this paper, we offer a gentle introduction to Gaussian processes for time-series data analysis. T...
In this dissertation, we introduce classical and Bayesian approaches to get inferences on the parame...
O principal objetivo da aplicação de modelos de séries temporais é a obtenção de projeções para os v...
This article describes the use of Bayesian methods in the statistical analysis of time series. The u...
Resumo: Neste estudo é introduzida uma abordagem Bayesiana para analisar dados de séries temporais d...
Neste trabalho comparamos modelos de séries temporais auto-regresivos de ordem p AR(p), ajustados pe...
Generalized autoregressive moving average (GARMA) models are a class of models that was developed fo...
We present the results on the comparison of efficiency of approximate Bayesian methods for the analy...
A análise de séries temporais se caracteriza pelo estudo de observações autocorrelacionadas ao longo...
A Bayesian approach to the analysis of AR time series models, which permits the usual stationarity a...
The main goal of applying time series models is to obtain projections for the future values of the v...
The analysis of time series data is important in fields as disparate as the social sciences, biology...
This work investigates outlier detection and modelling in non-Gaussian autoregressive time series mo...
In this paper, we develop a Bayesian analysis of a threshold antoregressive model with exponential n...
Nesta dissertação estudou-se o modelo GARMA para modelar séries temporais de dados de contagem com a...
In this paper, we offer a gentle introduction to Gaussian processes for time-series data analysis. T...
In this dissertation, we introduce classical and Bayesian approaches to get inferences on the parame...
O principal objetivo da aplicação de modelos de séries temporais é a obtenção de projeções para os v...
This article describes the use of Bayesian methods in the statistical analysis of time series. The u...
Resumo: Neste estudo é introduzida uma abordagem Bayesiana para analisar dados de séries temporais d...
Neste trabalho comparamos modelos de séries temporais auto-regresivos de ordem p AR(p), ajustados pe...
Generalized autoregressive moving average (GARMA) models are a class of models that was developed fo...
We present the results on the comparison of efficiency of approximate Bayesian methods for the analy...
A análise de séries temporais se caracteriza pelo estudo de observações autocorrelacionadas ao longo...