This paper is concerned with the estimation of the regression coefficients for a count data model when one of the explanatory variables is subject to heteroscedastic measurement error. The observed values W are related to the true regressor X by the additive error model W=X+U. The errors U are assumed to be normally distributed with zero mean but heteroscedastic variances, which are known or can be estimated from repeated measurements. Inference is done by using quasi likelihood methods, where a model of the observed data is specified only through a mean and a variance function for the response Y given W and other correctly observed covariates. Although this approach weakens the assumption of a parametric regression model, there is still th...