We observe an infinitely dimensional Gaussian random vector x=#xi#+#upsilon# where #xi# is a sequence of standard Gaussian variables and #upsilon# element of l_2 is an unknown mean. We consider the hypothesis testing problem H_0: #upsilon#=0 versus alternatives H _e_l_e_m_e_n_t _o_f _,_#tau#: #upsilon# element of V _e_l_e_m_e_n_t _o_f for the sets V _e_l_e_m_e_n_t _o_f =V _e_l_e_m_e_n_t _o_f (#tau#, #rho# _e_l_e_m_e_n_t _o_f) is contained in l_2 which correspond to l_q-ellipsoids of the radiuses R/ element of and of power semi-axes a_i=i"-"s with l_p-ellipsoid of the radiuses #rho# _e_l_e_m_e_n_t _o_f / element of and of semi-axes b_i=i"-"r removed or to similar Besov bodies B_q_,_t_; _s(R/ element of) with Besov bodies ...