This paper is concerned with the numerical solution of the double layer potential equation on polyhedra. Specifically, we consider collocation schemes based on multiscale decompositions of piecewise linear finite element spaces defined on polyhedra. An essential difficulty is that the resulting linear systems are not sparse. However, for uniform grids and periodic problems one can show that the use of multiscale bases gives rise to matrices that can be well approximated by sparse matrices in such a way that the solutions to the perturbed equations exhibits still sufficient accuracy. Our objective is to explore to what extent the presence of corners and edges in the domain as well as the lack of uniform discretizations affects the performanc...