Nous introduisons la notion de taille asymptotique d'un point parabolique, qui nous permet de démontrer une conjecture de Douady, ainsi que de donner une nouvelle preuve d'un théorème de Yoccoz.Nous donnons une constuction géométrique d'une application holomorphe, qui généralise aux applications de cornes des résultats que la fraction de Blaschke z au carré fois z moins trois sur un moins trois z permettait d'obtenir pour les polynômes quadratiques ayant un point fixe indifférent de nombre de rotation de type constant. Nous énonçons deux conjectures et deux hypothèses et prouvons qu'elles impliquent l'existence d'un irrationnel theta tel que le polynôme P de z égale rho fois z plus z au carré, avec rho égale exponentielle de i fois deux foi...
For a sequence (cn) of complex numbers we consider the quadratic polynomials fcn(z): = z 2 + cn and ...
AbstractWe consider the exponential maps ƒλ : ℂ → ℂ defined by the formula ƒλ (z) = λez, λ(0,1/e]. L...
This note deals with Julia sets of polynomials. One of the most interesting questions is the classif...
Tout le contenu de ce mémoire est un travail en commun de l'auteur et de Xavier Buff.Pour theta nomb...
We study (Lebesgue) typical orbits of quadratic polynomials $P_a(z)=e^{2\pi a} z+z^2: C -> C$, with ...
The present thesis is dedicated to two topics in Dynamics of Holomorphic maps. The first topic is d...
Dans cette thèse, on s'intéresse aux systèmes dynamiques holomorphes dépendants de paramètres. Notre...
We determine the asymptotic pole distribution for three types of best approximants (Padé at infinity...
We describe the statistical properties of the dynamics of the quadratic polynomials $P_α$$( z )$ =$e...
We construct Feigenbaum quadratic-like maps with a Julia set of positive Lebesgue measure. Indeed, i...
Let 0 < θ < 1 be an irrational number with continued fraction expansion θ = [a1, a2, a3,...], ...
In this thesis we investigate degeneration of rational maps and generation of parabolic cycles. Ther...
Understanding the geometry of the Mandelbrot set has been a central pillar of holomorphic dynamics o...
This paper deals with Julia sets of polynomials and, more general, functions meromorphic on the comp...
If J is the Julia set of a parabolic rational map having Hausdorff dimension h 0 or 0 for some expli...
For a sequence (cn) of complex numbers we consider the quadratic polynomials fcn(z): = z 2 + cn and ...
AbstractWe consider the exponential maps ƒλ : ℂ → ℂ defined by the formula ƒλ (z) = λez, λ(0,1/e]. L...
This note deals with Julia sets of polynomials. One of the most interesting questions is the classif...
Tout le contenu de ce mémoire est un travail en commun de l'auteur et de Xavier Buff.Pour theta nomb...
We study (Lebesgue) typical orbits of quadratic polynomials $P_a(z)=e^{2\pi a} z+z^2: C -> C$, with ...
The present thesis is dedicated to two topics in Dynamics of Holomorphic maps. The first topic is d...
Dans cette thèse, on s'intéresse aux systèmes dynamiques holomorphes dépendants de paramètres. Notre...
We determine the asymptotic pole distribution for three types of best approximants (Padé at infinity...
We describe the statistical properties of the dynamics of the quadratic polynomials $P_α$$( z )$ =$e...
We construct Feigenbaum quadratic-like maps with a Julia set of positive Lebesgue measure. Indeed, i...
Let 0 < θ < 1 be an irrational number with continued fraction expansion θ = [a1, a2, a3,...], ...
In this thesis we investigate degeneration of rational maps and generation of parabolic cycles. Ther...
Understanding the geometry of the Mandelbrot set has been a central pillar of holomorphic dynamics o...
This paper deals with Julia sets of polynomials and, more general, functions meromorphic on the comp...
If J is the Julia set of a parabolic rational map having Hausdorff dimension h 0 or 0 for some expli...
For a sequence (cn) of complex numbers we consider the quadratic polynomials fcn(z): = z 2 + cn and ...
AbstractWe consider the exponential maps ƒλ : ℂ → ℂ defined by the formula ƒλ (z) = λez, λ(0,1/e]. L...
This note deals with Julia sets of polynomials. One of the most interesting questions is the classif...