Cette thèse est consacrée à l'étude de la cyclicité des systèmes quadratiques réversibles et intégrabilité de certains systèmes Lotka-Volterra. La première partie de la thèse est consacrée à la cyclicité des systèmes quadratiques réversibles génériques. Plus précisément, nous étudions le nombre maximal des zéros des intégrales abéliennes associées à une perturbation quadratiques de ces systèmes. Nous démontrons la régularité des courbes centroides associées dans un cadre général. Pour deux cas des valeurs particulières des paramètres, nous démontrons que le nombre maximal de zéros des intégrales abéliennes est deux et la cyclicité de ces systèmes est 2. Un nouveau critère pour la convexité des courbes centroides est donné. De nouveaux résul...
In this paper we investigate the linearizability problem for the planar Lotka-Volterra complex quart...
International audienceWe revisit the bifurcation theory of the Lotka–Volterra quadratic system [Form...
La recherche de cycles limites pour des sytèmes polynômiaux du plan est historiquement motivée par l...
Integrability and linearizability of the Lotka-Volterra systems are studied. We prove sufficient con...
Denote by Q(H) and Q(R) the Hamiltonian class and reversible class of quadratic integrable systems. ...
We prove that by perturbing the periodic annulus of the quadratic polynomial reversible Lotka-Volter...
AbstractQuadratic perturbations of a class of quadratic reversible systems are studied. The associat...
AbstractDenote by QH and QR the Hamiltonian class and reversible class of quadratic integrable syste...
We prove that perturbing the two periodic annuli of the quadratic polynomial reversible Lotka-Volter...
By using the Chebyshev criterion to study the number of zeros of Abelian integrals, developed by M. ...
Hamiltonian n-dimensional Lotka–Volterra systems are introduced that have n−1 conserved quantities. ...
Quadratic perturbations of a one-parameter family of quadratic reversible systems with two centers (...
AbstractIntegrability and linearizability of the Lotka–Volterra systems are studied. We prove suffic...
AbstractIn the paper we find a set of necessary conditions that must be satisfied by a quadratic sys...
AbstractDenote by QH and QR the Hamiltonian class and reversible class of quadratic integrable syste...
In this paper we investigate the linearizability problem for the planar Lotka-Volterra complex quart...
International audienceWe revisit the bifurcation theory of the Lotka–Volterra quadratic system [Form...
La recherche de cycles limites pour des sytèmes polynômiaux du plan est historiquement motivée par l...
Integrability and linearizability of the Lotka-Volterra systems are studied. We prove sufficient con...
Denote by Q(H) and Q(R) the Hamiltonian class and reversible class of quadratic integrable systems. ...
We prove that by perturbing the periodic annulus of the quadratic polynomial reversible Lotka-Volter...
AbstractQuadratic perturbations of a class of quadratic reversible systems are studied. The associat...
AbstractDenote by QH and QR the Hamiltonian class and reversible class of quadratic integrable syste...
We prove that perturbing the two periodic annuli of the quadratic polynomial reversible Lotka-Volter...
By using the Chebyshev criterion to study the number of zeros of Abelian integrals, developed by M. ...
Hamiltonian n-dimensional Lotka–Volterra systems are introduced that have n−1 conserved quantities. ...
Quadratic perturbations of a one-parameter family of quadratic reversible systems with two centers (...
AbstractIntegrability and linearizability of the Lotka–Volterra systems are studied. We prove suffic...
AbstractIn the paper we find a set of necessary conditions that must be satisfied by a quadratic sys...
AbstractDenote by QH and QR the Hamiltonian class and reversible class of quadratic integrable syste...
In this paper we investigate the linearizability problem for the planar Lotka-Volterra complex quart...
International audienceWe revisit the bifurcation theory of the Lotka–Volterra quadratic system [Form...
La recherche de cycles limites pour des sytèmes polynômiaux du plan est historiquement motivée par l...