Les langages réguliers sont des langages qui ont été largement étudiés, notamment du point de vue de leurs propriétés de clôture ensembliste : l'ensemble des langages réguliers (pour un alphabet donné) forme une algèbre de Boole close par concaténation et étoile de Kleene. Ces propriétés ne se généralisent pas toutes à l ensemble des langages algébriques qui est un sur-ensemble de l'ensemble des langages réguliers. Notamment les langages algébriques ne sont pas clos par intersection. Pour engendrer ces langages, nous utilisons les grammaires déterministes de graphes. Une grammaire de graphes est un système fini de récriture d'hypergraphes finis. Par récriture itérée à partir d'un non-terminal, la grammaire engendre un graphe régulier dont l...