Cette thèse porte sur l'étude des classes de permutations à motifs exclus. Une analyse combinatoire des permutations via leur décomposition par substitution permet d'obtenir des résultats algorithmiques. La première partie de la thèse étudie la structure des classes de permutations. Plus précisément on donne un algorithme pour calculer une spécification combinatoire pour une classe de permutations données par sa base de motifs exclus. La spécification est obtenue si et seulement si la classe contient un nombre fini de permutations simples, cette condition étant testée par l'algorithme lui-même. Cet algorithme puise sa source dans les travaux de Albert et Atkinson établissant qu'une classe ayant un nombre fini de permutations simples a une b...