By means of numerical modelling the cycling of iron between its various physical (dissolved, colloidal, particulate) and chemical (redox state and organic complexation) forms in the upper mixed layer of the ocean is analysed. Using the model an initial quantitative assessment is made of how this cycling influences iron uptake by phytoplankton and its loss via particulate export. The model is forced with observed dust deposition rates, mixed layer depths, and solar radiation at the site of the Bermuda Atlantic Timeseries Study (BATS). It contains an optimised ecosystem model which yields results close to the observational data from BATS. Firstly, the results of a zero-dimensional model approach show that the mixed layer cycle strongly influe...