The present work studies the connections between microstructural instabilities and their macroscopic manifestations defined as the loss of rank-one convexity of the effective properties in finitely strained porous elastomers with a) random iso-disperse and b) periodic microstructures. The powerful second order homogenization (SOH) approximation technique, initially developed by P. Ponte Castaneda for random media, is also used here to study the onset of failure for periodic microstructures and the results are compared to more accurate finite element method (FEM) calculations. The influence of microgeometry (random and periodic with square and hexagonally arranged pores), initial porosity, matrix constitutive law (neo-Hookean and Gent) and m...