Scanning Kelvin Nanoprobe (SKN) microscopy is a new technique, based on Lord Kelvin's theory of contact electrification, which is able to measure changes in the work function of a surface with nanometre- scale precision. This technique has great potential in the analysis of surface chemistry, especially that of self-assembled monolayers and biochemical interactions. This thesis examines the potential of SKN microscopy in analytical chemical applications. SKN microscopy is used and contrasted against a range of other analytical techniques, including atomic force microscopy (AFM), confocal Raman spectroscopy and common electrochemical techniques such as cyclic voltammetry and electrochemical impedance spectroscopy. A short background is given...