A seismic processing workflow based on iterative ray + Born migration/inversion and target-oriented postprocessing of the migrated image is developed for fine-scale quantitative characterization of reflectors. The first step of the workflow involves linear iterations of the ray + Born migration/inversion. The output of the first step is a true-amplitude migrated image parameterized by velocity perturbations. In a second step, postprocessing of the migrated image is performed through a random search with a very-fast simulated annealing (VFSA) algorithm. The forward problem of the global optimization is a simple convolutional model that linearly relates a vertical profile of the band-limited migrated image after depth-to-time conversion to a ...