Numerous machine learning and signal/image processing tasks can be formulated as statistical inference problems. As an archetypal example, recommendation systems rely on the completion of partially observed user/item matrix, which can be conducted via the joint estimation of latent factors and activation coefficients. More formally, the object to be inferred is usually defined as the solution of a variational or stochastic optimization problem. In particular, within a Bayesian framework, this solution is defined as the minimizer of a cost function, referred to as the posterior loss. In the simple case when this function is chosen as quadratic, the Bayesian estimator is known to be the posterior mean which minimizes the mean square error and...
This thesis consists of two parts which can be read independently. The first part is about the Adapt...
La simulation est devenue dans la dernière décennie un outil essentiel du traitement statistique de ...
Dans de nombreux problèmes, des modèles complexes non-Gaussiens et/ou non-linéaires sont nécessaires...
Numerous machine learning and signal/image processing tasks can be formulated as statistical inferen...
Ce survol fournit une introduction aux techniques d’échantillonnage de type Markov Chain Monte Carlo...
Bayesian approaches are widely used in signal processing applications. In order to derive plausible...
Mención Internacional en el título de doctorIn many fields of science and engineering, we are faced ...
In the present work we address the problem of Monte Carlo approximation of posterior probability dis...
La constante de normalisation des champs de Markov se présente sous la forme d'une intégrale hauteme...
La méthode Quasi-Monte Carlo Randomisé (RQMC) est souvent utilisée pour estimer une intégrale sur le...
Bayesian methods provide the means for studying probabilistic models of linear as well as non-linear...
This PhD thesis deals with some computational issues of Bayesian statistics. I start by looking at p...
In this thesis we have worked on two different subjects. First we have developed a theoretical analy...
Cette thèse propose l'étude et l'application des méthodes de simulation Monte Carlo par chaînes de M...
En estimation bayésienne, lorsque le calcul explicite de la loi a posteriori du vecteur des paramèt...
This thesis consists of two parts which can be read independently. The first part is about the Adapt...
La simulation est devenue dans la dernière décennie un outil essentiel du traitement statistique de ...
Dans de nombreux problèmes, des modèles complexes non-Gaussiens et/ou non-linéaires sont nécessaires...
Numerous machine learning and signal/image processing tasks can be formulated as statistical inferen...
Ce survol fournit une introduction aux techniques d’échantillonnage de type Markov Chain Monte Carlo...
Bayesian approaches are widely used in signal processing applications. In order to derive plausible...
Mención Internacional en el título de doctorIn many fields of science and engineering, we are faced ...
In the present work we address the problem of Monte Carlo approximation of posterior probability dis...
La constante de normalisation des champs de Markov se présente sous la forme d'une intégrale hauteme...
La méthode Quasi-Monte Carlo Randomisé (RQMC) est souvent utilisée pour estimer une intégrale sur le...
Bayesian methods provide the means for studying probabilistic models of linear as well as non-linear...
This PhD thesis deals with some computational issues of Bayesian statistics. I start by looking at p...
In this thesis we have worked on two different subjects. First we have developed a theoretical analy...
Cette thèse propose l'étude et l'application des méthodes de simulation Monte Carlo par chaînes de M...
En estimation bayésienne, lorsque le calcul explicite de la loi a posteriori du vecteur des paramèt...
This thesis consists of two parts which can be read independently. The first part is about the Adapt...
La simulation est devenue dans la dernière décennie un outil essentiel du traitement statistique de ...
Dans de nombreux problèmes, des modèles complexes non-Gaussiens et/ou non-linéaires sont nécessaires...