International audienceWe present a neural network methodology for clustering large data sets into pertinent groups. We applied this methodology to analyze the phytoplankton absorption spectra data gathered by the Laboratoire d'Océanographie de Villefranche. We first partitioned the data into 100 classes by means of a self-organizing map (SOM) and then we clustered these classes into 6 significant groups. We focused our analysis on three POMME campaigns. We were able to interpret the absorption spectra of the samples taken in the first oceanic optical layer during these campaigns, in terms of seasonal variability. We showed that spectra from the PROSOPE Mediterranean campaign, which was conducted in a different region, were strongly similar ...