Higher categories are algebraic structures consisting of cells of various dimensions equipped with notions of composition, which have found many applications in mathematics (algebraic topology in particular) and theoretical computer science. They are notably complicated structures whose manipulation is technical and error-prone. The purpose of this thesis is to introduce several computational tools for strict and semi-strict variants of higher categories that ease the study of these objects. In order to represent higher categories as finite data, so that they can be given as input to a program, we use the structure of polygraph, initially introduced by Street and Burroni for strict categories and then generalized by Batanin to any algebraic...