With the impressive progress that has been made in transcribing spoken language, it is becoming increasingly possible to exploit transcribed data for tasks that require comprehension of what is said in a conversation. The work in this dissertation, carried out in the context of a project devoted to the development of a meeting assistant, contributes to ongoing efforts to teach machines to understand multi-party meeting speech. We have focused on the challenge of automatically generating abstractive meeting summaries.We first present our results on Abstractive Meeting Summarization (AMS), which aims to take a meeting transcription as input and produce an abstractive summary as output. We introduce a fully unsupervised framework for this task...
The proliferation of digital data has enabled scientific and practitioner communities to createnew d...
High-quality dialogue-summary paired data is expensive to produce and domain-sensitive, making abstr...
Abstractive summarization is a standard task for written documents, such as news articles. Applying ...
Nous étudions, dans cette thèse, l'application des approches neuronales d'apprentissage profond pour...
The main objective of this thesis is to improve the automatic capture of semantic information with t...
Le résumé automatique de document repose généralement sur des méthodes par extraction qui sélectionn...
In this thesis, we study the application of Deep Learning Neural Approaches for abstractive summariz...
Conversational AI has received a growing interest in recent years from both the research community a...
Application of spoken language understanding aim to extract relevant items of meaning from spoken si...
This thesis is a part of the emergence of deep learning and focuses on spoken language understanding...
Les méthodes de compréhension de la parole visent à extraire des éléments de sens pertinents du sign...
2588/5000Recognizing a speaker's opinions in an oral interaction is a crucial step in improving comm...
L'objectif principal de cette thèse est d'améliorer l'inférence automatique pour la modélisation et ...
Relating statistical machine learning approaches to the automatic analysis of multiparty communicat...
La prolifération des données numériques a permis aux communautés de scientifiques et de praticiens d...
The proliferation of digital data has enabled scientific and practitioner communities to createnew d...
High-quality dialogue-summary paired data is expensive to produce and domain-sensitive, making abstr...
Abstractive summarization is a standard task for written documents, such as news articles. Applying ...
Nous étudions, dans cette thèse, l'application des approches neuronales d'apprentissage profond pour...
The main objective of this thesis is to improve the automatic capture of semantic information with t...
Le résumé automatique de document repose généralement sur des méthodes par extraction qui sélectionn...
In this thesis, we study the application of Deep Learning Neural Approaches for abstractive summariz...
Conversational AI has received a growing interest in recent years from both the research community a...
Application of spoken language understanding aim to extract relevant items of meaning from spoken si...
This thesis is a part of the emergence of deep learning and focuses on spoken language understanding...
Les méthodes de compréhension de la parole visent à extraire des éléments de sens pertinents du sign...
2588/5000Recognizing a speaker's opinions in an oral interaction is a crucial step in improving comm...
L'objectif principal de cette thèse est d'améliorer l'inférence automatique pour la modélisation et ...
Relating statistical machine learning approaches to the automatic analysis of multiparty communicat...
La prolifération des données numériques a permis aux communautés de scientifiques et de praticiens d...
The proliferation of digital data has enabled scientific and practitioner communities to createnew d...
High-quality dialogue-summary paired data is expensive to produce and domain-sensitive, making abstr...
Abstractive summarization is a standard task for written documents, such as news articles. Applying ...