International audienceMixing layers near sloped topography in the abyss are thought to play a critical role in the global overturning circulation. Yet the behavior of passive tracers within sloping boundary layer systems has received little attention, despite the extensive use of tracer observations to understand abyssal circulation. Here, we investigate the behavior of a passive tracer released near a sloping boundary within a flow governed by one-dimensional boundary layer theory. The spreading rate of the tracer across isopycnals is influenced by factors such as the bottom-intensification of mixing, the dipole of upwelling (in the boundary layer) and downwelling (in the outer mixing layer), and along-isopycnal diffusion. For isolated nea...