International audienceAn important task when processing dynamic PET images is to identify the time-activity curves (TACs) of the pure tissues, along with their corresponding spatial proportions. This step, often referred to as unmixing or factor analysis, is based on a loss function which measures the discrepancy between the observed data and the model. This loss function should be chosen according to the statistical properties of the noise, which is in this case hard to characterize. Indeed, while dynamic PET images results from a decay process that can be statistically described by a Poisson distribution, acquisition and post-filtering reconstruction drastically change the nature of the noise. In the literature dedicated to factor analysi...