International audienceThe aim of this paper is to obtain a posteriori error bounds of optimal order in time and space for the linear second-order wave equation discretized by the Newmark scheme in time and the finite element method in space. An error estimate is derived in the L∞-in-time/energy-in-space norm. Numerical experiments are reported for several test cases and confirm equivalence of the proposed estimator and the true error
We address the error control of Galerkin discretization (in space) of linear second-order hyperbolic...
La thèse porte sur l’analyse d’erreur a posteriori pour la résolution numérique de l’équation linéai...
International audienceIn this work we present and analyse a time discretisation strategy for linear ...
International audienceThe aim of this paper is to obtain a posteriori error bounds of optimal order ...
We propose a cheaper version of a posteriori error estimator from Gorynina et al. (Numer. Anal. (201...
We propose a cheaper version of a posteriori error estimator from Gorynina et al. (Namer. Anal. (201...
The aim of this paper is to show that, for a linear second-order hyperbolic equation discretized by ...
This thesis focuses on the a posteriori error analysis for the linear second-order wave equation dis...
summary:We consider a family of conforming finite element schemes with piecewise polynomial space of...
We address the error control of Galerkin discretization (in space) of linear second-order hyperbolic...
La thèse porte sur l’analyse d’erreur a posteriori pour la résolution numérique de l’équation linéai...
International audienceIn this work we present and analyse a time discretisation strategy for linear ...
International audienceThe aim of this paper is to obtain a posteriori error bounds of optimal order ...
We propose a cheaper version of a posteriori error estimator from Gorynina et al. (Numer. Anal. (201...
We propose a cheaper version of a posteriori error estimator from Gorynina et al. (Namer. Anal. (201...
The aim of this paper is to show that, for a linear second-order hyperbolic equation discretized by ...
This thesis focuses on the a posteriori error analysis for the linear second-order wave equation dis...
summary:We consider a family of conforming finite element schemes with piecewise polynomial space of...
We address the error control of Galerkin discretization (in space) of linear second-order hyperbolic...
La thèse porte sur l’analyse d’erreur a posteriori pour la résolution numérique de l’équation linéai...
International audienceIn this work we present and analyse a time discretisation strategy for linear ...